pyemma.msm.ChapmanKolmogorovValidator¶
-
class
pyemma.msm.
ChapmanKolmogorovValidator
(test_model, test_estimator, memberships, mlags=None, conf=0.95, err_est=False, n_jobs=None, show_progress=True)¶ -
__init__
(test_model, test_estimator, memberships, mlags=None, conf=0.95, err_est=False, n_jobs=None, show_progress=True)¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
(test_model, test_estimator, memberships)Initialize self.
estimate
(X, **params)Estimates the model given the data X
fit
(X[, y])Estimates parameters - for compatibility with sklearn.
get_params
([deep])Get parameters for this estimator.
load
(file_name[, model_name])Loads a previously saved PyEMMA object from disk.
save
(file_name[, model_name, overwrite, …])saves the current state of this object to given file and name.
set_params
(**params)Set the parameters of this estimator.
Attributes
Returns estimates at different lagtimes
Returns the confidence intervals of the estimates at different lagtimes (if available).
lagtimes
The logger for this class instance
memberships
The model estimated by this Estimator
Returns number of jobs/threads to use during assignment of data.
The name of this instance
Returns tested model predictions at different lagtimes
Returns the confidence intervals of the estimates at different lagtimes (if available)
whether to show the progress of heavy calculations on this object.
test_estimator
test_model
-
estimate
(X, **params)¶ Estimates the model given the data X
- Parameters
X (object) – A reference to the data from which the model will be estimated
params (dict) – New estimation parameter values. The parameters must that have been announced in the __init__ method of this estimator. The present settings will overwrite the settings of parameters given in the __init__ method, i.e. the parameter values after this call will be those that have been used for this estimation. Use this option if only one or a few parameters change with respect to the __init__ settings for this run, and if you don’t need to remember the original settings of these changed parameters.
- Returns
estimator – The estimated estimator with the model being available.
- Return type
object
-
estimates
¶ Returns estimates at different lagtimes
- Returns
Y – each row contains the n observables computed at one of the T lag t imes.
- Return type
ndarray(T, n)
-
estimates_conf
¶ Returns the confidence intervals of the estimates at different lagtimes (if available).
If not available, returns None.
- Returns
L (ndarray(T, n)) – each row contains the lower confidence bound of n observables computed at one of the T lag times.
R (ndarray(T, n)) – each row contains the upper confidence bound of n observables computed at one of the T lag times.
-
fit
(X, y=None)¶ Estimates parameters - for compatibility with sklearn.
- Parameters
X (object) – A reference to the data from which the model will be estimated
- Returns
estimator – The estimator (self) with estimated model.
- Return type
object
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
mapping of string to any
-
classmethod
load
(file_name, model_name='default')¶ Loads a previously saved PyEMMA object from disk.
- Parameters
file_name (str or file like object (has to provide read method)) – The file like object tried to be read for a serialized object.
model_name (str, default='default') – if multiple models are contained in the file, these can be accessed by their name. Use
pyemma.list_models()
to get a representation of all stored models.
- Returns
obj
- Return type
the de-serialized object
-
logger
¶ The logger for this class instance
-
model
¶ The model estimated by this Estimator
-
n_jobs
¶ Returns number of jobs/threads to use during assignment of data.
- Returns
If None it will return the setting of ‘PYEMMA_NJOBS’ or
’SLURM_CPUS_ON_NODE’ environment variable. If none of these environment variables exist,
the number of processors /or cores is returned.
Notes
This setting will effectively be multiplied by the the number of threads used by NumPy for algorithms which use multiple processes. So take care if you choose this manually.
-
name
¶ The name of this instance
-
predictions
¶ Returns tested model predictions at different lagtimes
- Returns
Y – each row contains the n observables predicted at one of the T lag times by the tested model.
- Return type
ndarray(T, n)
-
predictions_conf
¶ Returns the confidence intervals of the estimates at different lagtimes (if available)
If not available, returns None.
- Returns
L (ndarray(T, n)) – each row contains the lower confidence bound of n observables computed at one of the T lag times.
R (ndarray(T, n)) – each row contains the upper confidence bound of n observables computed at one of the T lag times.
-
save
(file_name, model_name='default', overwrite=False, save_streaming_chain=False)¶ saves the current state of this object to given file and name.
- Parameters
file_name (str) – path to desired output file
model_name (str, default='default') – creates a group named ‘model_name’ in the given file, which will contain all of the data. If the name already exists, and overwrite is False (default) will raise a RuntimeError.
overwrite (bool, default=False) – Should overwrite existing model names?
save_streaming_chain (boolean, default=False) – if True, the data_producer(s) of this object will also be saved in the given file.
Examples
>>> import pyemma, numpy as np >>> from pyemma.util.contexts import named_temporary_file >>> m = pyemma.msm.MSM(P=np.array([[0.1, 0.9], [0.9, 0.1]]))
>>> with named_temporary_file() as file: # doctest: +SKIP ... m.save(file, 'simple') # doctest: +SKIP ... inst_restored = pyemma.load(file, 'simple') # doctest: +SKIP >>> np.testing.assert_equal(m.P, inst_restored.P) # doctest: +SKIP
-
set_params
(**params)¶ Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object. :returns: :rtype: self
-
show_progress
¶ whether to show the progress of heavy calculations on this object.
-