pyemma.thermo.mbar¶
-
pyemma.thermo.
mbar
(ttrajs, dtrajs, bias, maxiter=100000, maxerr=1e-15, save_convergence_info=0, dt_traj='1 step', direct_space=False)¶ Multi-state Bennet acceptance ratio
- Parameters
ttrajs (numpy.ndarray(T) of int, or list of numpy.ndarray(T_i) of int) – A single discrete trajectory or a list of discrete trajectories. The integers are indexes in 0,…,num_therm_states-1 enumerating the thermodynamic states the trajectory is in at any time.
dtrajs (numpy.ndarray(T) of int, or list of numpy.ndarray(T_i) of int) – A single discrete trajectory or a list of discrete trajectories. The integers are indexes in 0,…,num_conf_states-1 enumerating the num_conf_states Markov states or the bins the trajectory is in at any time.
bias (numpy.ndarray(T, num_therm_states), or list of numpy.ndarray(T_i, num_therm_states)) – A single reduced bias energy trajectory or a list of reduced bias energy trajectories. For every simulation frame seen in trajectory i and time step t, btrajs[i][t, k] is the reduced bias energy of that frame evaluated in the k’th thermodynamic state (i.e. at the k’th umbrella/Hamiltonian/temperature)
maxiter (int, optional, default=10000) – The maximum number of dTRAM iterations before the estimator exits unsuccessfully.
maxerr (float, optional, default=1e-15) – Convergence criterion based on the maximal free energy change in a self-consistent iteration step.
save_convergence_info (int, optional, default=0) – Every save_convergence_info iteration steps, store the actual increment and the actual loglikelihood; 0 means no storage.
dt_traj (str, optional, default='1 step') –
Description of the physical time corresponding to the lag. May be used by analysis algorithms such as plotting tools to pretty-print the axes. By default ‘1 step’, i.e. there is no physical time unit. Specify by a number, whitespace and unit. Permitted units are (* is an arbitrary string):
’fs’, ‘femtosecond*’’ps’, ‘picosecond*’’ns’, ‘nanosecond*’’us’, ‘microsecond*’’ms’, ‘millisecond*’’s’, ‘second*’direct_space (bool, optional, default=False) – Whether to perform the self-consitent iteration with Boltzmann factors (direct space) or free energies (log-space). When analyzing data from multi-temperature simulations, direct-space is not recommended.
- Returns
A stationary model which consists of thermodynamic quantities at all temperatures/thermodynamic states.
- Return type
A
MultiThermModel
object
Example
Umbrella sampling: Suppose we simulate in K umbrellas, centered at positions \(y_0,...,y_{K-1}\) with bias energies
\[b_k(x) = \frac{c_k}{2 \textrm{kT}} \cdot (x - y_k)^2\]Suppose we have one simulation of length T in each umbrella, and they are ordered from 0 to K-1. We have discretized the x-coordinate into 100 bins. Then dtrajs and ttrajs should each be a list of \(K\) arrays. dtrajs would look for example like this:
[ (0, 0, 0, 0, 1, 1, 1, 0, 0, 0, ...), (0, 1, 0, 1, 0, 1, 1, 0, 0, 1, ...), ... ]
where each array has length T, and is the sequence of bins (in the range 0 to 99) visited along the trajectory. ttrajs would look like this:
[ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...), (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...), ... ]
Because trajectory 1 stays in umbrella 1 (index 0), trajectory 2 stays in umbrella 2 (index 1), and so forth.
The bias would be a list of \(T \times K\) arrays which specify each frame’s bias energy in all thermodynamic states:
[ ((0, 1.7, 2.3, 6.1, …), …), ((0, 2.4, 3.1, 9,5, …), …), … ]
Let us try the above example:
>>> from pyemma.thermo import mbar >>> import numpy as np >>> ttrajs = [np.array([0,0,0,0,0,0,0]), np.array([1,1,1,1,1,1,1])] >>> dtrajs = [np.array([0,0,0,0,1,1,1]), np.array([0,1,0,1,0,1,1])] >>> bias = [np.array([[1,0],[1,0],[0,0],[0,0],[0,0],[0,0],[0,0]],dtype=np.float64), np.array([[1,0],[0,0],[0,0],[1,0],[0,0],[1,0],[1,0]],dtype=np.float64)] >>> mbar_obj = mbar(ttrajs, dtrajs, bias, maxiter=1000000, maxerr=1.0E-14) >>> mbar_obj.stationary_distribution # doctest: +ELLIPSIS array([ 0.5... 0.5...])
See
MultiThermModel
for a full documentation.-
class
pyemma.thermo.models.multi_therm.
MultiThermModel
(models, f_therm, pi=None, f=None, label='ground state')¶ Coupled set of stationary models at multiple thermodynamic states
Methods
expectation
(a)Equilibrium expectation value of a given observable.
get_model_params
([deep])Get parameters for this model.
load
(file_name[, model_name])Loads a previously saved PyEMMA object from disk.
meval
(f, *args, **kw)Evaluates the given function call for all models Returns the results of the calls in a list
save
(file_name[, model_name, overwrite, …])saves the current state of this object to given file and name.
set_model_params
([models, f_therm, pi, f, label])Call to set all basic model parameters.
update_model_params
(**params)Update given model parameter if they are set to specific values
Attributes
The active set of states on which all computations and estimations will be done.
The free energies (in units of kT) on the configuration states.
The free energies (in units of kT) on the configuration states.
Human-readable description for the thermodynamic state of this model.
Number of active states on which all computations and estimations are done.
Size of the full set of states.
The stationary distribution on the configuration states.
The stationary distribution on the configuration states.
Index of the unbiased thermodynamic state.
-
active_set
¶ The active set of states on which all computations and estimations will be done.
-
expectation
(a)¶ Equilibrium expectation value of a given observable.
- Parameters
a ((M,) ndarray) – Observable vector
- Returns
val – Equilibrium expectation value of the given observable
- Return type
float
Notes
The equilibrium expectation value of an observable a is defined as follows
\[\mathbb{E}_{\mu}[a] = \sum_i \mu_i a_i\]\(\mu=(\mu_i)\) is the stationary vector of the transition matrix \(T\).
-
f
¶ The free energies (in units of kT) on the configuration states.
-
f_full_state
¶
-
free_energies
¶ The free energies (in units of kT) on the configuration states.
-
free_energies_full_state
¶
-
get_model_params
(deep=True)¶ Get parameters for this model.
- Parameters
deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
mapping of string to any
-
label
¶ Human-readable description for the thermodynamic state of this model.
-
classmethod
load
(file_name, model_name='default')¶ Loads a previously saved PyEMMA object from disk.
- Parameters
file_name (str or file like object (has to provide read method)) – The file like object tried to be read for a serialized object.
model_name (str, default='default') – if multiple models are contained in the file, these can be accessed by their name. Use
pyemma.list_models()
to get a representation of all stored models.
- Returns
obj
- Return type
the de-serialized object
-
meval
(f, *args, **kw)¶ Evaluates the given function call for all models Returns the results of the calls in a list
-
nstates
¶ Number of active states on which all computations and estimations are done.
-
nstates_full
¶ Size of the full set of states.
-
pi
¶ The stationary distribution on the configuration states.
-
pi_full_state
¶
-
save
(file_name, model_name='default', overwrite=False, save_streaming_chain=False)¶ saves the current state of this object to given file and name.
- Parameters
file_name (str) – path to desired output file
model_name (str, default='default') – creates a group named ‘model_name’ in the given file, which will contain all of the data. If the name already exists, and overwrite is False (default) will raise a RuntimeError.
overwrite (bool, default=False) – Should overwrite existing model names?
save_streaming_chain (boolean, default=False) – if True, the data_producer(s) of this object will also be saved in the given file.
Examples
>>> import pyemma, numpy as np >>> from pyemma.util.contexts import named_temporary_file >>> m = pyemma.msm.MSM(P=np.array([[0.1, 0.9], [0.9, 0.1]]))
>>> with named_temporary_file() as file: # doctest: +SKIP ... m.save(file, 'simple') # doctest: +SKIP ... inst_restored = pyemma.load(file, 'simple') # doctest: +SKIP >>> np.testing.assert_equal(m.P, inst_restored.P) # doctest: +SKIP
-
set_model_params
(models=None, f_therm=None, pi=None, f=None, label='ground state')¶ Call to set all basic model parameters.
- Parameters
pi (ndarray(n)) – Stationary distribution. If not already normalized, pi will be scaled to fulfill \(\sum_i \pi_i = 1\). The free energies f will then be computed from pi via \(f_i = - \log(\pi_i)\).
f (ndarray(n)) – Discrete-state free energies. If normalized_f = True, a constant will be added to normalize the stationary distribution. Otherwise f is left as given. Then, pi will be computed from f via \(\pi_i = \exp(-f_i)\) and, if necessary, scaled to fulfill \(\sum_i \pi_i = 1\). If both (pi and f) are given, f takes precedence over pi.
normalize_energy (bool, default=True) – If parametrized by free energy f, normalize them such that \(\sum_i \pi_i = 1\), which is achieved by \(\log \sum_i \exp(-f_i) = 0\).
label (str, default=None) – Human-readable description for the thermodynamic state of this model. May contain a temperature description, such as ‘300 K’ or a description of bias energy such as ‘unbiased’ or ‘Umbrella 1’.
-
stationary_distribution
¶ The stationary distribution on the configuration states.
-
stationary_distribution_full_state
¶
-
unbiased_state
¶ Index of the unbiased thermodynamic state.
-
update_model_params
(**params)¶ Update given model parameter if they are set to specific values
-
References
- 1
Shirts, M.R. and Chodera, J.D. 2008 Statistically optimal analysis of samples from multiple equilibrium states J. Chem. Phys. 129, 124105