pyemma.coordinates.estimation.covariance.LaggedCovariance¶
-
class
pyemma.coordinates.estimation.covariance.
LaggedCovariance
(*args, **kwargs)¶ -
__init__
(c00=True, c0t=False, ctt=False, remove_constant_mean=None, remove_data_mean=False, reversible=False, bessel=True, sparse_mode='auto', modify_data=False, lag=0, weights=None, stride=1, skip=0, chunksize=NotImplemented, ncov_max=inf, column_selection=None, diag_only=False)¶ Initialize self. See help(type(self)) for accurate signature.
Methods
_Loggable__create_logger
()_SerializableMixIn__interpolate
(state, klass)__delattr__
(name, /)Implement delattr(self, name).
__dir__
()Default dir() implementation.
__eq__
(value, /)Return self==value.
__format__
(format_spec, /)Default object formatter.
__ge__
(value, /)Return self>=value.
__getattribute__
(name, /)Return getattr(self, name).
__getstate__
()__gt__
(value, /)Return self>value.
__hash__
()Return hash(self).
__init__
([c00, c0t, ctt, …])Initialize self.
__init_subclass__
(*args, **kwargs)This method is called when a class is subclassed.
__le__
(value, /)Return self<=value.
__lt__
(value, /)Return self<value.
__my_getstate__
()__my_setstate__
(state)__ne__
(value, /)Return self!=value.
__new__
(cls, *args, **kwargs)Create and return a new object.
__reduce__
()Helper for pickle.
__reduce_ex__
(protocol, /)Helper for pickle.
__repr__
()Return repr(self).
__setattr__
(name, value, /)Implement setattr(self, name, value).
__setstate__
(state)__sizeof__
()Size of object in memory, in bytes.
__str__
()Return str(self).
__subclasshook__
Abstract classes can override this to customize issubclass().
_check_estimated
()_cleanup_logger
(logger_id, logger_name)_estimate
(iterable[, partial_fit])_get_classes_to_inspect
()gets classes self derives from which 1.
_get_interpolation_map
(cls)_get_param_names
()Get parameter names for the estimator
_get_private_field
(cls, name[, default])_get_serialize_fields
(cls)_get_state_of_serializeable_fields
(klass, state):return a dictionary {k:v} for k in self.serialize_fields and v=getattr(self, k)
_get_version
(cls[, require])_get_version_for_class_from_state
(state, klass)retrieves the version of the current klass from the state mapping from old locations to new ones.
_init_covar
(partial_fit, n_chunks)_logger_is_active
(level)@param level: int log level (debug=10, info=20, warn=30, error=40, critical=50)
_set_state_from_serializeable_fields_and_state
(…)set only fields from state, which are present in klass.__serialize_fields
estimate
(X[, chunksize])Estimates the model given the data X
fit
(X[, y])Estimates parameters - for compatibility with sklearn.
get_params
([deep])Get parameters for this estimator.
load
(file_name[, model_name])Loads a previously saved PyEMMA object from disk.
partial_fit
(X)incrementally update the estimates
save
(file_name[, model_name, overwrite, …])saves the current state of this object to given file and name.
set_params
(**params)Set the parameters of this estimator.
Attributes
C00_
Instantaneous covariance matrix
C0t_
Time-lagged covariance matrix
Ctt_
Covariance matrix of the time shifted data
_Estimator__serialize_fields
_LaggedCovariance__serialize_fields
_LaggedCovariance__serialize_version
_Loggable__ids
_Loggable__refs
_SerializableMixIn__serialize_fields
_SerializableMixIn__serialize_modifications_map
_SerializableMixIn__serialize_version
__dict__
__doc__
__module__
__weakref__
list of weak references to the object (if defined)
_estimated
_loglevel_CRITICAL
_loglevel_DEBUG
_loglevel_ERROR
_loglevel_INFO
_loglevel_WARN
_save_data_producer
column_selection
cov
cov_tau
logger
The logger for this class instance
mean
mean_tau
model
The model estimated by this Estimator
name
The name of this instance
nsave
weights
-