pyemma.coordinates.estimation.covariance.LaggedCovariance

class pyemma.coordinates.estimation.covariance.LaggedCovariance(*args, **kwargs)
__init__(c00=True, c0t=False, ctt=False, remove_constant_mean=None, remove_data_mean=False, reversible=False, bessel=True, sparse_mode='auto', modify_data=False, lag=0, weights=None, stride=1, skip=0, chunksize=NotImplemented, ncov_max=inf, column_selection=None, diag_only=False)

Initialize self. See help(type(self)) for accurate signature.

Methods

_Loggable__create_logger()

_SerializableMixIn__interpolate(state, klass)

__delattr__(name, /)

Implement delattr(self, name).

__dir__()

Default dir() implementation.

__eq__(value, /)

Return self==value.

__format__(format_spec, /)

Default object formatter.

__ge__(value, /)

Return self>=value.

__getattribute__(name, /)

Return getattr(self, name).

__getstate__()

__gt__(value, /)

Return self>value.

__hash__()

Return hash(self).

__init__([c00, c0t, ctt, …])

Initialize self.

__init_subclass__(*args, **kwargs)

This method is called when a class is subclassed.

__le__(value, /)

Return self<=value.

__lt__(value, /)

Return self<value.

__my_getstate__()

__my_setstate__(state)

__ne__(value, /)

Return self!=value.

__new__(cls, *args, **kwargs)

Create and return a new object.

__reduce__()

Helper for pickle.

__reduce_ex__(protocol, /)

Helper for pickle.

__repr__()

Return repr(self).

__setattr__(name, value, /)

Implement setattr(self, name, value).

__setstate__(state)

__sizeof__()

Size of object in memory, in bytes.

__str__()

Return str(self).

__subclasshook__

Abstract classes can override this to customize issubclass().

_check_estimated()

_cleanup_logger(logger_id, logger_name)

_estimate(iterable[, partial_fit])

_get_classes_to_inspect()

gets classes self derives from which 1.

_get_interpolation_map(cls)

_get_param_names()

Get parameter names for the estimator

_get_private_field(cls, name[, default])

_get_serialize_fields(cls)

_get_state_of_serializeable_fields(klass, state)

:return a dictionary {k:v} for k in self.serialize_fields and v=getattr(self, k)

_get_version(cls[, require])

_get_version_for_class_from_state(state, klass)

retrieves the version of the current klass from the state mapping from old locations to new ones.

_init_covar(partial_fit, n_chunks)

_logger_is_active(level)

@param level: int log level (debug=10, info=20, warn=30, error=40, critical=50)

_set_state_from_serializeable_fields_and_state(…)

set only fields from state, which are present in klass.__serialize_fields

estimate(X[, chunksize])

Estimates the model given the data X

fit(X[, y])

Estimates parameters - for compatibility with sklearn.

get_params([deep])

Get parameters for this estimator.

load(file_name[, model_name])

Loads a previously saved PyEMMA object from disk.

partial_fit(X)

incrementally update the estimates

save(file_name[, model_name, overwrite, …])

saves the current state of this object to given file and name.

set_params(**params)

Set the parameters of this estimator.

Attributes

C00_

Instantaneous covariance matrix

C0t_

Time-lagged covariance matrix

Ctt_

Covariance matrix of the time shifted data

_Estimator__serialize_fields

_LaggedCovariance__serialize_fields

_LaggedCovariance__serialize_version

_Loggable__ids

_Loggable__refs

_SerializableMixIn__serialize_fields

_SerializableMixIn__serialize_modifications_map

_SerializableMixIn__serialize_version

__dict__

__doc__

__module__

__weakref__

list of weak references to the object (if defined)

_estimated

_loglevel_CRITICAL

_loglevel_DEBUG

_loglevel_ERROR

_loglevel_INFO

_loglevel_WARN

_save_data_producer

column_selection

cov

cov_tau

logger

The logger for this class instance

mean

mean_tau

model

The model estimated by this Estimator

name

The name of this instance

nsave

weights