Thermo package (pyemma.thermo)

The thermo package provides functions to analyze data originating from potentially biased multi-ensemble MD-Simulations.

User-Functions

For most users, the following high-level functions are sufficient to estimate models from data.

estimate_umbrella_sampling(us_trajs, ...[, ...]) Wraps umbrella sampling data or a mix of umbrella sampling and and direct molecular dynamics.
estimate_multi_temperature(energy_trajs, ...) Wraps multi-temperature data.
dtram(ttrajs, dtrajs, bias, lag[, maxiter, ...]) Discrete transition-based reweighting analysis method
wham(ttrajs, dtrajs, bias[, maxiter, ...]) Weighted histogram analysis method

Thermo classes

Estimators to generate models from data. If you are not an expert user, use the API functions above.

StationaryModel([pi, f, normalize_energy, label]) StationaryModel combines a stationary vector with discrete-state free energies.
MEMM(models, f_therm[, pi, f, label]) Coupled set of Models at multiple thermodynamic states
WHAM(bias_energies_full[, stride, maxiter, ...]) Weighted Histogram Analysis Method
DTRAM(bias_energies_full, lag[, count_mode, ...]) Discrete Transition(-based) Reweighting Analysis Method