pyemma.coordinates.transform.VAMPChapmanKolmogorovValidator¶
-
class
pyemma.coordinates.transform.
VAMPChapmanKolmogorovValidator
(*args, **kwargs)¶ -
__init__
(test_model, test_estimator, observables, statistics, observables_mean_free, statistics_mean_free, mlags=10, n_jobs=None, show_progress=True)¶ Note
It is recommended that you create this object by calling the cktest method of a VAMP object created with
vamp
.- Parameters
test_model (Model) – Model with the smallest lag time. Is used to make predictions for larger lag times.
test_estimator (Estimator) – Parametrized Estimator that has produced the model. Is used as a prototype for estimating models at higher lag times.
observables (np.ndarray((input_dimension, n_observables))) – Coefficients that express one or multiple observables in the basis of the input features.
statistics (np.ndarray((input_dimension, n_statistics))) – Coefficients that express one or multiple statistics in the basis of the input features.
observables_mean_free (bool, default=False) – If true, coefficients in observables refer to the input features with feature means removed. If false, coefficients in observables refer to the unmodified input features.
statistics_mean_free (bool, default=False) – If true, coefficients in
statistics
refer to the input features with feature means removed. If false, coefficients instatistics
refer to the unmodified input features.mlags (int or int-array, default=10) – multiples of lag times for testing the Model, e.g. range(10). A single int will trigger a range, i.e. mlags=10 maps to mlags=range(10). Note that you need to be able to do a model prediction for each of these lag time multiples, e.g. the value 0 only make sense if model.expectation(lag_multiple=0) will work.
n_jobs (int, default=None) – how many jobs to use during calculation
show_progress (bool, default=True) – Show progressbars for calculation?
Notes
The object can be plotted with
plot_cktest
with the option y01=False.
Methods
_Loggable__create_logger
()_ProgressReporterMixin__check_stage_registered
(stage)_SerializableMixIn__interpolate
(state, klass)__delattr__
(name, /)Implement delattr(self, name).
__dir__
()Default dir() implementation.
__eq__
(value, /)Return self==value.
__format__
(format_spec, /)Default object formatter.
__ge__
(value, /)Return self>=value.
__getattribute__
(name, /)Return getattr(self, name).
__getstate__
()__gt__
(value, /)Return self>value.
__hash__
()Return hash(self).
__init__
(test_model, test_estimator, …[, …])__init_subclass__
(*args, **kwargs)This method is called when a class is subclassed.
__le__
(value, /)Return self<=value.
__lt__
(value, /)Return self<value.
__my_getstate__
()__my_setstate__
(state)__ne__
(value, /)Return self!=value.
__new__
(cls, *args, **kwargs)Create and return a new object.
__reduce__
()Helper for pickle.
__reduce_ex__
(protocol, /)Helper for pickle.
__repr__
()Return repr(self).
__setattr__
(name, value, /)Implement setattr(self, name, value).
__setstate__
(state)__sizeof__
()Size of object in memory, in bytes.
__str__
()Return str(self).
__subclasshook__
Abstract classes can override this to customize issubclass().
_check_estimated
()_cleanup_logger
(logger_id, logger_name)_compute_observables
(model, estimator[, mlag])Compute observables for given model
_compute_observables_conf
(model, estimator)Compute confidence interval for observables for given model
_estimate
(data)_get_classes_to_inspect
()gets classes self derives from which 1.
_get_interpolation_map
(cls)_get_param_names
()Get parameter names for the estimator
_get_private_field
(cls, name[, default])_get_serialize_fields
(cls)_get_state_of_serializeable_fields
(klass, state):return a dictionary {k:v} for k in self.serialize_fields and v=getattr(self, k)
_get_version
(cls[, require])_get_version_for_class_from_state
(state, klass)retrieves the version of the current klass from the state mapping from old locations to new ones.
_logger_is_active
(level)@param level: int log level (debug=10, info=20, warn=30, error=40, critical=50)
_progress_context
([stage])- param stage
_progress_force_finish
([stage, description])forcefully finish the progress for given stage
_progress_register
(amount_of_work[, …])Registers a progress which can be reported/displayed via a progress bar.
_progress_set_description
(stage, description)set description of an already existing progress
_progress_update
(numerator_increment[, …])Updates the progress.
_set_state_from_serializeable_fields_and_state
(…)set only fields from state, which are present in klass.__serialize_fields
estimate
(X, **params)Estimates the model given the data X
fit
(X[, y])Estimates parameters - for compatibility with sklearn.
get_params
([deep])Get parameters for this estimator.
load
(file_name[, model_name])Loads a previously saved PyEMMA object from disk.
save
(file_name[, model_name, overwrite, …])saves the current state of this object to given file and name.
set_params
(**params)Set the parameters of this estimator.
Attributes
_Estimator__serialize_fields
_LaggedModelValidator__serialize_fields
_LaggedModelValidator__serialize_modifications_map
_LaggedModelValidator__serialize_version
_Loggable__ids
_Loggable__refs
_SerializableMixIn__serialize_fields
_SerializableMixIn__serialize_modifications_map
_SerializableMixIn__serialize_version
_VAMPChapmanKolmogorovValidator__serialize_fields
_VAMPChapmanKolmogorovValidator__serialize_version
__dict__
__doc__
__module__
__weakref__
list of weak references to the object (if defined)
_estimated
_loglevel_CRITICAL
_loglevel_DEBUG
_loglevel_ERROR
_loglevel_INFO
_loglevel_WARN
_pg_threshold
_prog_rep_callbacks
_prog_rep_descriptions
_prog_rep_progressbars
_progress_num_registered
_progress_registered_stages
_save_data_producer
estimates
Returns estimates at different lagtimes
estimates_conf
Returns the confidence intervals of the estimates at different lagtimes (if available).
lagtimes
logger
The logger for this class instance
model
The model estimated by this Estimator
n_jobs
Returns number of jobs/threads to use during assignment of data.
name
The name of this instance
predictions
Returns tested model predictions at different lagtimes
predictions_conf
Returns the confidence intervals of the estimates at different lagtimes (if available)
show_progress
whether to show the progress of heavy calculations on this object.
statistics
-