pyemma.coordinates.transform.VAMPChapmanKolmogorovValidator

class pyemma.coordinates.transform.VAMPChapmanKolmogorovValidator(*args, **kwargs)
__init__(test_model, test_estimator, observables, statistics, observables_mean_free, statistics_mean_free, mlags=10, n_jobs=None, show_progress=True)

Note

It is recommended that you create this object by calling the cktest method of a VAMP object created with vamp.

Parameters
  • test_model (Model) – Model with the smallest lag time. Is used to make predictions for larger lag times.

  • test_estimator (Estimator) – Parametrized Estimator that has produced the model. Is used as a prototype for estimating models at higher lag times.

  • observables (np.ndarray((input_dimension, n_observables))) – Coefficients that express one or multiple observables in the basis of the input features.

  • statistics (np.ndarray((input_dimension, n_statistics))) – Coefficients that express one or multiple statistics in the basis of the input features.

  • observables_mean_free (bool, default=False) – If true, coefficients in observables refer to the input features with feature means removed. If false, coefficients in observables refer to the unmodified input features.

  • statistics_mean_free (bool, default=False) – If true, coefficients in statistics refer to the input features with feature means removed. If false, coefficients in statistics refer to the unmodified input features.

  • mlags (int or int-array, default=10) – multiples of lag times for testing the Model, e.g. range(10). A single int will trigger a range, i.e. mlags=10 maps to mlags=range(10). Note that you need to be able to do a model prediction for each of these lag time multiples, e.g. the value 0 only make sense if model.expectation(lag_multiple=0) will work.

  • n_jobs (int, default=None) – how many jobs to use during calculation

  • show_progress (bool, default=True) – Show progressbars for calculation?

Notes

The object can be plotted with plot_cktest with the option y01=False.

Methods

_Loggable__create_logger()

_ProgressReporterMixin__check_stage_registered(stage)

_SerializableMixIn__interpolate(state, klass)

__delattr__(name, /)

Implement delattr(self, name).

__dir__()

Default dir() implementation.

__eq__(value, /)

Return self==value.

__format__(format_spec, /)

Default object formatter.

__ge__(value, /)

Return self>=value.

__getattribute__(name, /)

Return getattr(self, name).

__getstate__()

__gt__(value, /)

Return self>value.

__hash__()

Return hash(self).

__init__(test_model, test_estimator, …[, …])

__init_subclass__(*args, **kwargs)

This method is called when a class is subclassed.

__le__(value, /)

Return self<=value.

__lt__(value, /)

Return self<value.

__my_getstate__()

__my_setstate__(state)

__ne__(value, /)

Return self!=value.

__new__(cls, *args, **kwargs)

Create and return a new object.

__reduce__()

Helper for pickle.

__reduce_ex__(protocol, /)

Helper for pickle.

__repr__()

Return repr(self).

__setattr__(name, value, /)

Implement setattr(self, name, value).

__setstate__(state)

__sizeof__()

Size of object in memory, in bytes.

__str__()

Return str(self).

__subclasshook__

Abstract classes can override this to customize issubclass().

_check_estimated()

_cleanup_logger(logger_id, logger_name)

_compute_observables(model, estimator[, mlag])

Compute observables for given model

_compute_observables_conf(model, estimator)

Compute confidence interval for observables for given model

_estimate(data)

_get_classes_to_inspect()

gets classes self derives from which 1.

_get_interpolation_map(cls)

_get_param_names()

Get parameter names for the estimator

_get_private_field(cls, name[, default])

_get_serialize_fields(cls)

_get_state_of_serializeable_fields(klass, state)

:return a dictionary {k:v} for k in self.serialize_fields and v=getattr(self, k)

_get_version(cls[, require])

_get_version_for_class_from_state(state, klass)

retrieves the version of the current klass from the state mapping from old locations to new ones.

_logger_is_active(level)

@param level: int log level (debug=10, info=20, warn=30, error=40, critical=50)

_progress_context([stage])

param stage

_progress_force_finish([stage, description])

forcefully finish the progress for given stage

_progress_register(amount_of_work[, …])

Registers a progress which can be reported/displayed via a progress bar.

_progress_set_description(stage, description)

set description of an already existing progress

_progress_update(numerator_increment[, …])

Updates the progress.

_set_state_from_serializeable_fields_and_state(…)

set only fields from state, which are present in klass.__serialize_fields

estimate(X, **params)

Estimates the model given the data X

fit(X[, y])

Estimates parameters - for compatibility with sklearn.

get_params([deep])

Get parameters for this estimator.

load(file_name[, model_name])

Loads a previously saved PyEMMA object from disk.

save(file_name[, model_name, overwrite, …])

saves the current state of this object to given file and name.

set_params(**params)

Set the parameters of this estimator.

Attributes

_Estimator__serialize_fields

_LaggedModelValidator__serialize_fields

_LaggedModelValidator__serialize_modifications_map

_LaggedModelValidator__serialize_version

_Loggable__ids

_Loggable__refs

_SerializableMixIn__serialize_fields

_SerializableMixIn__serialize_modifications_map

_SerializableMixIn__serialize_version

_VAMPChapmanKolmogorovValidator__serialize_fields

_VAMPChapmanKolmogorovValidator__serialize_version

__dict__

__doc__

__module__

__weakref__

list of weak references to the object (if defined)

_estimated

_loglevel_CRITICAL

_loglevel_DEBUG

_loglevel_ERROR

_loglevel_INFO

_loglevel_WARN

_pg_threshold

_prog_rep_callbacks

_prog_rep_descriptions

_prog_rep_progressbars

_progress_num_registered

_progress_registered_stages

_save_data_producer

estimates

Returns estimates at different lagtimes

estimates_conf

Returns the confidence intervals of the estimates at different lagtimes (if available).

lagtimes

logger

The logger for this class instance

model

The model estimated by this Estimator

n_jobs

Returns number of jobs/threads to use during assignment of data.

name

The name of this instance

predictions

Returns tested model predictions at different lagtimes

predictions_conf

Returns the confidence intervals of the estimates at different lagtimes (if available)

show_progress

whether to show the progress of heavy calculations on this object.

statistics