pyemma.coordinates.transform.VAMPModel

class pyemma.coordinates.transform.VAMPModel(*args, **kwargs)
__init__(mean_0=None, mean_t=None, C00=None, Ctt=None, C0t=None, dim=None, epsilon=1e-06, scaling=None)

Initialize self. See help(type(self)) for accurate signature.

Methods

_SerializableMixIn__interpolate(state, klass)

__delattr__(name, /)

Implement delattr(self, name).

__dir__()

Default dir() implementation.

__eq__(value, /)

Return self==value.

__format__(format_spec, /)

Default object formatter.

__ge__(value, /)

Return self>=value.

__getattribute__(name, /)

Return getattr(self, name).

__getstate__()

__gt__(value, /)

Return self>value.

__hash__()

Return hash(self).

__init__([mean_0, mean_t, C00, Ctt, C0t, …])

Initialize self.

__init_subclass__(*args, **kwargs)

This method is called when a class is subclassed.

__le__(value, /)

Return self<=value.

__lt__(value, /)

Return self<value.

__my_getstate__()

__my_setstate__(state)

__ne__(value, /)

Return self!=value.

__new__(cls, *args, **kwargs)

Create and return a new object.

__reduce__()

Helper for pickle.

__reduce_ex__(protocol, /)

Helper for pickle.

__repr__()

Return repr(self).

__setattr__(name, value, /)

Implement setattr(self, name, value).

__setstate__(state)

__sizeof__()

Size of object in memory, in bytes.

__str__()

Return str(self).

__subclasshook__

Abstract classes can override this to customize issubclass().

_cumvar(singular_values)

_diagonalize()

Performs SVD on covariance matrices and save left, right singular vectors and values in the model.

_dimension(rank0, rankt, dim, singular_values)

output dimension

_get_classes_to_inspect()

gets classes self derives from which 1.

_get_interpolation_map(cls)

_get_model_param_names()

Get parameter names for the model

_get_private_field(cls, name[, default])

_get_serialize_fields(cls)

_get_state_of_serializeable_fields(klass, state)

:return a dictionary {k:v} for k in self.serialize_fields and v=getattr(self, k)

_get_version(cls[, require])

_get_version_for_class_from_state(state, klass)

retrieves the version of the current klass from the state mapping from old locations to new ones.

_set_state_from_serializeable_fields_and_state(…)

set only fields from state, which are present in klass.__serialize_fields

dimension()

output dimension

expectation(observables, statistics[, …])

Compute future expectation of observable or covariance using the approximated Koopman operator.

get_model_params([deep])

Get parameters for this model.

load(file_name[, model_name])

Loads a previously saved PyEMMA object from disk.

save(file_name[, model_name, overwrite, …])

saves the current state of this object to given file and name.

score([test_model, score_method])

Compute the VAMP score for this model or the cross-validation score between self and a second model.

set_model_params(mean_0, mean_t, C00, Ctt, …)

update_model_params(**params)

Update given model parameter if they are set to specific values

Attributes

C00

C0t

Ctt

U

Tranformation matrix that represents the linear map from mean-free feature space to the space of left singular functions.

V

Tranformation matrix that represents the linear map from mean-free feature space to the space of right singular functions.

_SerializableMixIn__serialize_fields

_SerializableMixIn__serialize_modifications_map

_SerializableMixIn__serialize_version

_VAMPModel__serialize_fields

_VAMPModel__serialize_version

__dict__

__doc__

__module__

__weakref__

list of weak references to the object (if defined)

_save_data_producer

cumvar

cumulative kinetic variance

scaling

Scaling of projection.

singular_values

The singular values of the half-weighted Koopman matrix