pyemma.thermo.DTRAM

class pyemma.thermo.DTRAM(*args, **kwargs)

Discrete Transition(-based) Reweighting Analysis Method.

__init__(bias_energies_full, lag, count_mode='sliding', connectivity='reversible_pathways', maxiter=10000, maxerr=1e-15, save_convergence_info=0, dt_traj='1 step', init=None, init_maxiter=10000, init_maxerr=1e-08)

Discrete Transition(-based) Reweighting Analysis Method

Parameters
  • bias_energies_full (numpy.ndarray(shape=(num_therm_states, num_conf_states)) object) – bias_energies_full[j, i] is the bias energy in units of kT for each discrete state i at thermodynamic state j.

  • lag (int) – Integer lag time at which transitions are counted.

  • count_mode (str, optional, default='sliding') –

    Mode to obtain count matrices from discrete trajectories. Should be one of: * ‘sliding’ : a trajectory of length T will have \(T-\tau\) counts at time indexes

    \[(0 \rightarrow \tau), (1 \rightarrow \tau+1), ..., (T-\tau-1 \rightarrow T-1)\]
    • ’sample’a trajectory of length T will have \(T/\tau\) counts at time indexes
      \[(0 \rightarrow \tau), (\tau \rightarrow 2 \tau), ..., ((T/\tau-1) \tau \rightarrow T)\]

    Currently only ‘sliding’ is supported.

  • connectivity (str, optional, default='reversible_pathways') –

    One of ‘reversible_pathways’, ‘summed_count_matrix’ or None. Defines what should be considered a connected set in the joint (product) space of conformations and thermodynamic ensembles. * ‘reversible_pathways’ : requires that every state in the connected set

    can be reached by following a pathway of reversible transitions. A reversible transition between two Markov states (within the same thermodynamic state k) is a pair of Markov states that belong to the same strongly connected component of the count matrix (from thermodynamic state k). A pathway of reversible transitions is a list of reversible transitions [(i_1, i_2), (i_2, i_3),…, (i_(N-2), i_(N-1)), (i_(N-1), i_N)]. The thermodynamic state where the reversible transitions happen, is ignored in constructing the reversible pathways. This is equivalent to assuming that two ensembles overlap at some Markov state whenever there exist frames from both ensembles in that Markov state.

    • ’summed_count_matrix’ : all thermodynamic states are assumed to overlap. The connected set is then computed by summing the count matrices over all thermodynamic states and taking it’s largest strongly connected set. Not recommended!

    • None : assume that everything is connected. For debugging.

    For more details see pyemma.thermo.extensions.cset.compute_csets_dTRAM().

  • maxiter (int, optional, default=10000) – The maximum number of self-consistent iterations before the estimator exits unsuccessfully.

  • maxerr (float, optional, default=1.0E-15) – Convergence criterion based on the maximal free energy change in a self-consistent iteration step.

  • save_convergence_info (int, optional, default=0) – Every save_convergence_info iteration steps, store the actual increment and the actual log-likelihood; 0 means no storage.

  • dt_traj (str, optional, default='1 step') –

    Description of the physical time corresponding to the lag. May be used by analysis algorithms such as plotting tools to pretty-print the axes. By default ‘1 step’, i.e. there is no physical time unit. Specify by a number, whitespace and unit. Permitted units are (* is an arbitrary string):

    ’fs’, ‘femtosecond*’
    ’ps’, ‘picosecond*’
    ’ns’, ‘nanosecond*’
    ’us’, ‘microsecond*’
    ’ms’, ‘millisecond*’
    ’s’, ‘second*’

  • init (str, optional, default=None) –

    Use a specific initialization for self-consistent iteration:

    None: use a hard-coded guess for free energies and Lagrangian multipliers
    ’wham’: perform a short WHAM estimate to initialize the free energies

  • init_maxiter (int, optional, default=10000) – The maximum number of self-consistent iterations during the initialization.

  • init_maxerr (float, optional, default=1.0E-8) – Convergence criterion for the initialization.

Example

>>> from pyemma.thermo import DTRAM
>>> import numpy as np
>>> B = np.array([[0, 0],[0.5, 1.0]])
>>> dtram = DTRAM(B, 1)
>>> ttrajs = [np.array([0,0,0,0,0,0,0,0,0,0]),np.array([1,1,1,1,1,1,1,1,1,1])]
>>> dtrajs = [np.array([0,0,0,0,1,1,1,0,0,0]),np.array([0,1,0,1,0,1,1,0,0,1])]
>>> dtram = dtram.estimate((ttrajs, dtrajs))
>>> dtram.log_likelihood() 
-9.805...
>>> dtram.count_matrices 
array([[[5, 1],
        [1, 2]],
[[1, 4],

[3, 1]]], dtype=int32)

>>> dtram.stationary_distribution 
array([ 0.38...,  0.61...])
>>> dtram.meval('stationary_distribution') 
[array([ 0.38...,  0.61...]), array([ 0.50...,  0.49...])]

References

1

Wu, H. et al 2014 Statistically optimal analysis of state-discretized trajectory data from multiple thermodynamic states J. Chem. Phys. 141, 214106

Methods

_Loggable__create_logger()

_SerializableMixIn__interpolate(state, klass)

__delattr__(name, /)

Implement delattr(self, name).

__dir__()

Default dir() implementation.

__eq__(other)

Return self==value.

__format__(format_spec, /)

Default object formatter.

__ge__(value, /)

Return self>=value.

__getattribute__(name, /)

Return getattr(self, name).

__getstate__()

__gt__(value, /)

Return self>value.

__init__(bias_energies_full, lag[, …])

Discrete Transition(-based) Reweighting Analysis Method

__init_subclass__(*args, **kwargs)

This method is called when a class is subclassed.

__le__(value, /)

Return self<=value.

__lt__(value, /)

Return self<value.

__my_getstate__()

__my_setstate__(state)

__ne__(value, /)

Return self!=value.

__new__(cls, *args, **kwargs)

Create and return a new object.

__reduce__()

Helper for pickle.

__reduce_ex__(protocol, /)

Helper for pickle.

__repr__()

Return repr(self).

__setattr__(name, value, /)

Implement setattr(self, name, value).

__setstate__(state)

__sizeof__()

Size of object in memory, in bytes.

__str__()

Return str(self).

__subclasshook__

Abstract classes can override this to customize issubclass().

_check_estimated()

_cleanup_logger(logger_id, logger_name)

_estimate(trajs)

_get_classes_to_inspect()

gets classes self derives from which 1.

_get_interpolation_map(cls)

_get_model_param_names()

Get parameter names for the model

_get_param_names()

Get parameter names for the estimator

_get_private_field(cls, name[, default])

_get_serialize_fields(cls)

_get_state_of_serializeable_fields(klass, state)

:return a dictionary {k:v} for k in self.serialize_fields and v=getattr(self, k)

_get_version(cls[, require])

_get_version_for_class_from_state(state, klass)

retrieves the version of the current klass from the state mapping from old locations to new ones.

_logger_is_active(level)

@param level: int log level (debug=10, info=20, warn=30, error=40, critical=50)

_set_state_from_serializeable_fields_and_state(…)

set only fields from state, which are present in klass.__serialize_fields

estimate(trajs)

param X

Simulation trajectories. ttrajs contain the indices of the thermodynamic state and

expectation(a)

Equilibrium expectation value of a given observable.

fit(X[, y])

Estimates parameters - for compatibility with sklearn.

get_model_params([deep])

Get parameters for this model.

get_params([deep])

Get parameters for this estimator.

load(file_name[, model_name])

Loads a previously saved PyEMMA object from disk.

log_likelihood()

meval(f, *args, **kw)

Evaluates the given function call for all models Returns the results of the calls in a list

save(file_name[, model_name, overwrite, …])

saves the current state of this object to given file and name.

set_model_params([models, f_therm, pi, f, label])

Call to set all basic model parameters.

set_params(**params)

Set the parameters of this estimator.

update_model_params(**params)

Update given model parameter if they are set to specific values

Attributes

_DTRAM__serialize_fields

_DTRAM__serialize_version

_Estimator__serialize_fields

_Loggable__ids

_Loggable__refs

_MEMM__serialize_version

_MultiThermModel__serialize_version

_SerializableMixIn__serialize_fields

_SerializableMixIn__serialize_modifications_map

_SerializableMixIn__serialize_version

_StationaryModel__serialize_version

_SubSet__serialize_fields

_SubSet__serialize_version

_ThermoBase__serialize_fields

_ThermoBase__serialize_version

__dict__

__doc__

__hash__

__module__

__weakref__

list of weak references to the object (if defined)

_estimated

_loglevel_CRITICAL

_loglevel_DEBUG

_loglevel_ERROR

_loglevel_INFO

_loglevel_WARN

_save_data_producer

active_set

The active set of states on which all computations and estimations will be done.

dt_traj

f

The free energies (in units of kT) on the configuration states.

f_full_state

force_constants

The individual force matrices labelled accordingly to ttrajs.

free_energies

The free energies (in units of kT) on the configuration states.

free_energies_full_state

label

Human-readable description for the thermodynamic state of this model.

logger

The logger for this class instance

model

The model estimated by this Estimator

msm

MSM of the unbiased thermodynamic state; only present when unbiased data available.

name

The name of this instance

nstates

Number of active states on which all computations and estimations are done.

nstates_full

Size of the full set of states.

pi

The stationary distribution on the configuration states.

pi_full_state

stationary_distribution

The stationary distribution on the configuration states.

stationary_distribution_full_state

temperatures

The individual temperatures labelled accordingly to ttrajs.

umbrella_centers

The individual umbrella centers labelled accordingly to ttrajs.

unbiased_state

Index of the unbiased thermodynamic state.