pyemma.thermo.StationaryModel¶
-
class
pyemma.thermo.
StationaryModel
(*args, **kwargs)¶ StationaryModel combines a stationary vector with discrete-state free energies.
-
__init__
(pi=None, f=None, normalize_energy=True, label='ground state')¶ StationaryModel combines a stationary vector with discrete-state free energies.
- Parameters
pi (ndarray(n)) – Stationary distribution. If not already normalized, pi will be scaled to fulfill \(\sum_i \pi_i = 1\). The free energies f will be computed from pi via \(f_i = - \log(\pi_i)\). Only if normalize_f is True, a constant will be added to ensure consistency with \(\sum_i \pi_i = 1\).
f (ndarray(n)) – Discrete-state free energies. If normalized_f = True, a constant will be added to normalize the stationary distribution. Otherwise f is left as given. If both (pi and f) are given, f takes precedence.
normalize_energy (bool, default=True) – If parametrized by free energy f, normalize them such that \(\sum_i \pi_i = 1\), which is achieved by \(\log \sum_i \exp(-f_i) = 0\).
label (str, default='ground state') – Human-readable description for the thermodynamic state of this model. May contain a temperature description, such as ‘300 K’ or a description of bias energy such as ‘unbiased’ or ‘Umbrella 1’
Methods
_SerializableMixIn__interpolate
(state, klass)__delattr__
(name, /)Implement delattr(self, name).
__dir__
()Default dir() implementation.
__eq__
(other)Return self==value.
__format__
(format_spec, /)Default object formatter.
__ge__
(value, /)Return self>=value.
__getattribute__
(name, /)Return getattr(self, name).
__getstate__
()__gt__
(value, /)Return self>value.
__init__
([pi, f, normalize_energy, label])StationaryModel combines a stationary vector with discrete-state free energies.
__init_subclass__
(*args, **kwargs)This method is called when a class is subclassed.
__le__
(value, /)Return self<=value.
__lt__
(value, /)Return self<value.
__my_getstate__
()__my_setstate__
(state)__ne__
(value, /)Return self!=value.
__new__
(cls, *args, **kwargs)Create and return a new object.
__reduce__
()Helper for pickle.
__reduce_ex__
(protocol, /)Helper for pickle.
__repr__
()Return repr(self).
__setattr__
(name, value, /)Implement setattr(self, name, value).
__setstate__
(state)__sizeof__
()Size of object in memory, in bytes.
__str__
()Return str(self).
__subclasshook__
Abstract classes can override this to customize issubclass().
_get_classes_to_inspect
()gets classes self derives from which 1.
_get_interpolation_map
(cls)_get_model_param_names
()Get parameter names for the model
_get_private_field
(cls, name[, default])_get_serialize_fields
(cls)_get_state_of_serializeable_fields
(klass, state):return a dictionary {k:v} for k in self.serialize_fields and v=getattr(self, k)
_get_version
(cls[, require])_get_version_for_class_from_state
(state, klass)retrieves the version of the current klass from the state mapping from old locations to new ones.
_set_state_from_serializeable_fields_and_state
(…)set only fields from state, which are present in klass.__serialize_fields
expectation
(a)Equilibrium expectation value of a given observable.
get_model_params
([deep])Get parameters for this model.
load
(file_name[, model_name])Loads a previously saved PyEMMA object from disk.
save
(file_name[, model_name, overwrite, …])saves the current state of this object to given file and name.
set_model_params
([pi, f, normalize_f, label])Call to set all basic model parameters.
update_model_params
(**params)Update given model parameter if they are set to specific values
Attributes
_SerializableMixIn__serialize_fields
_SerializableMixIn__serialize_modifications_map
_SerializableMixIn__serialize_version
_StationaryModel__serialize_version
_SubSet__serialize_fields
_SubSet__serialize_version
__dict__
__doc__
__hash__
__module__
__weakref__
list of weak references to the object (if defined)
_save_data_producer
active_set
The active set of states on which all computations and estimations will be done.
f
The free energies (in units of kT) on the configuration states.
f_full_state
free_energies
The free energies (in units of kT) on the configuration states.
free_energies_full_state
label
Human-readable description for the thermodynamic state of this model.
nstates
Number of active states on which all computations and estimations are done.
nstates_full
Size of the full set of states.
pi
The stationary distribution on the configuration states.
pi_full_state
stationary_distribution
The stationary distribution on the configuration states.
stationary_distribution_full_state
-