pyemma.thermo.StationaryModel

class pyemma.thermo.StationaryModel(*args, **kwargs)

StationaryModel combines a stationary vector with discrete-state free energies.

__init__(pi=None, f=None, normalize_energy=True, label='ground state')

StationaryModel combines a stationary vector with discrete-state free energies.

Parameters
  • pi (ndarray(n)) – Stationary distribution. If not already normalized, pi will be scaled to fulfill \(\sum_i \pi_i = 1\). The free energies f will be computed from pi via \(f_i = - \log(\pi_i)\). Only if normalize_f is True, a constant will be added to ensure consistency with \(\sum_i \pi_i = 1\).

  • f (ndarray(n)) – Discrete-state free energies. If normalized_f = True, a constant will be added to normalize the stationary distribution. Otherwise f is left as given. If both (pi and f) are given, f takes precedence.

  • normalize_energy (bool, default=True) – If parametrized by free energy f, normalize them such that \(\sum_i \pi_i = 1\), which is achieved by \(\log \sum_i \exp(-f_i) = 0\).

  • label (str, default='ground state') – Human-readable description for the thermodynamic state of this model. May contain a temperature description, such as ‘300 K’ or a description of bias energy such as ‘unbiased’ or ‘Umbrella 1’

Methods

_SerializableMixIn__interpolate(state, klass)

__delattr__(name, /)

Implement delattr(self, name).

__dir__()

Default dir() implementation.

__eq__(other)

Return self==value.

__format__(format_spec, /)

Default object formatter.

__ge__(value, /)

Return self>=value.

__getattribute__(name, /)

Return getattr(self, name).

__getstate__()

__gt__(value, /)

Return self>value.

__init__([pi, f, normalize_energy, label])

StationaryModel combines a stationary vector with discrete-state free energies.

__init_subclass__(*args, **kwargs)

This method is called when a class is subclassed.

__le__(value, /)

Return self<=value.

__lt__(value, /)

Return self<value.

__my_getstate__()

__my_setstate__(state)

__ne__(value, /)

Return self!=value.

__new__(cls, *args, **kwargs)

Create and return a new object.

__reduce__()

Helper for pickle.

__reduce_ex__(protocol, /)

Helper for pickle.

__repr__()

Return repr(self).

__setattr__(name, value, /)

Implement setattr(self, name, value).

__setstate__(state)

__sizeof__()

Size of object in memory, in bytes.

__str__()

Return str(self).

__subclasshook__

Abstract classes can override this to customize issubclass().

_get_classes_to_inspect()

gets classes self derives from which 1.

_get_interpolation_map(cls)

_get_model_param_names()

Get parameter names for the model

_get_private_field(cls, name[, default])

_get_serialize_fields(cls)

_get_state_of_serializeable_fields(klass, state)

:return a dictionary {k:v} for k in self.serialize_fields and v=getattr(self, k)

_get_version(cls[, require])

_get_version_for_class_from_state(state, klass)

retrieves the version of the current klass from the state mapping from old locations to new ones.

_set_state_from_serializeable_fields_and_state(…)

set only fields from state, which are present in klass.__serialize_fields

expectation(a)

Equilibrium expectation value of a given observable.

get_model_params([deep])

Get parameters for this model.

load(file_name[, model_name])

Loads a previously saved PyEMMA object from disk.

save(file_name[, model_name, overwrite, …])

saves the current state of this object to given file and name.

set_model_params([pi, f, normalize_f, label])

Call to set all basic model parameters.

update_model_params(**params)

Update given model parameter if they are set to specific values

Attributes

_SerializableMixIn__serialize_fields

_SerializableMixIn__serialize_modifications_map

_SerializableMixIn__serialize_version

_StationaryModel__serialize_version

_SubSet__serialize_fields

_SubSet__serialize_version

__dict__

__doc__

__hash__

__module__

__weakref__

list of weak references to the object (if defined)

_save_data_producer

active_set

The active set of states on which all computations and estimations will be done.

f

The free energies (in units of kT) on the configuration states.

f_full_state

free_energies

The free energies (in units of kT) on the configuration states.

free_energies_full_state

label

Human-readable description for the thermodynamic state of this model.

nstates

Number of active states on which all computations and estimations are done.

nstates_full

Size of the full set of states.

pi

The stationary distribution on the configuration states.

pi_full_state

stationary_distribution

The stationary distribution on the configuration states.

stationary_distribution_full_state