estimation - MSM estimation from data (msmtools.estimation
)¶
Countmatrix¶
count_matrix (dtraj, lag[, sliding, ...]) |
Generate a count matrix from given microstate trajectory. |
cmatrix (dtraj, lag[, sliding, ...]) |
Generate a count matrix from given microstate trajectory. |
Connectivity¶
connected_sets (C[, directed]) |
Compute connected sets of microstates. |
largest_connected_set (C[, directed]) |
Largest connected component for a directed graph with edge-weights given by the count matrix. |
largest_connected_submatrix (C[, directed, lcc]) |
Compute the count matrix on the largest connected set. |
connected_cmatrix (C[, directed, lcc]) |
Compute the count matrix on the largest connected set. |
is_connected (C[, directed]) |
Check connectivity of the given matrix. |
Estimation¶
transition_matrix (C[, reversible, mu, method]) |
Estimate the transition matrix from the given countmatrix. |
tmatrix (C[, reversible, mu, method]) |
Estimate the transition matrix from the given countmatrix. |
log_likelihood (C, T) |
Log-likelihood of the count matrix given a transition matrix. |
tmatrix_cov (C[, k]) |
Covariance tensor for non-reversible transition matrix posterior. |
error_perturbation (C, S) |
Error perturbation for given sensitivity matrix. |
Sampling¶
tmatrix_sampler (C[, reversible, mu, T0, ...]) |
Generate transition matrix sampler object. |
Bootstrap¶
bootstrap_counts (dtrajs, lagtime[, corrlength]) |
Generates a randomly resampled count matrix given the input coordinates. |
bootstrap_trajectories (trajs, correlation_length) |
Generates a randomly resampled trajectory segments. |
Priors¶
prior_neighbor (C[, alpha]) |
Neighbor prior for the given count matrix. |
prior_const (C[, alpha]) |
Constant prior for given count matrix. |
prior_rev (C[, alpha]) |
Prior counts for sampling of reversible transition matrices. |