pyemma.thermo.MBAR

class pyemma.thermo.MBAR(maxiter=10000, maxerr=1e-15, save_convergence_info=0, dt_traj='1 step', direct_space=False)

Multi-state Bennet Acceptance Ratio Method.

__init__(maxiter=10000, maxerr=1e-15, save_convergence_info=0, dt_traj='1 step', direct_space=False)

Multi-state Bennet Acceptance Ratio Method

Parameters:
  • maxiter (int, optional, default=10000) – The maximum number of self-consistent iterations before the estimator exits unsuccessfully.
  • maxerr (float, optional, default=1.0E-15) – Convergence criterion based on the maximal free energy change in a self-consistent iteration step.
  • save_convergence_info (int, optional, default=0) – Every save_convergence_info iteration steps, store the actual increment and the actual loglikelihood; 0 means no storage.
  • dt_traj (str, optional, default='1 step') –

    Description of the physical time corresponding to the lag. May be used by analysis algorithms such as plotting tools to pretty-print the axes. By default ‘1 step’, i.e. there is no physical time unit. Specify by a number, whitespace and unit. Permitted units are (* is an arbitrary string):

    ’fs’, ‘femtosecond*’
    ’ps’, ‘picosecond*’
    ’ns’, ‘nanosecond*’
    ’us’, ‘microsecond*’
    ’ms’, ‘millisecond*’
    ’s’, ‘second*’
  • stride (int, optional, default=1) – not used

Example

References

Methods

__init__([maxiter, maxerr, …]) Multi-state Bennet Acceptance Ratio Method
estimate(X)
param X:Simulation trajectories. ttrajs contain the indices of the thermodynamic state, dtrajs
expectation(a) Equilibrium expectation value of a given observable.
fit(X[, y]) Estimates parameters - for compatibility with sklearn.
get_model_params([deep]) Get parameters for this model.
get_params([deep]) Get parameters for this estimator.
load(file_name[, model_name]) Loads a previously saved PyEMMA object from disk.
meval(f, *args, **kw) Evaluates the given function call for all models Returns the results of the calls in a list
pointwise_free_energies([therm_state])
save(file_name[, model_name, overwrite, …]) saves the current state of this object to given file and name.
set_model_params([models, f_therm, pi, f, label]) Call to set all basic model parameters.
set_params(**params) Set the parameters of this estimator.
update_model_params(**params) Update given model parameter if they are set to specific values

Attributes

active_set The active set of states on which all computations and estimations will be done.
dt_traj
f The free energies (in units of kT) on the configuration states.
f_full_state
force_constants The individual force matrices labelled accordingly to ttrajs.
free_energies The free energies (in units of kT) on the configuration states.
free_energies_full_state
label Human-readable description for the thermodynamic state of this model.
logger The logger for this class instance
model The model estimated by this Estimator
name The name of this instance
nstates Number of active states on which all computations and estimations are done.
nstates_full Size of the full set of states.
pi The stationary distribution on the configuration states.
pi_full_state
stationary_distribution The stationary distribution on the configuration states.
stationary_distribution_full_state
temperatures The individual temperatures labelled accordingly to ttrajs.
umbrella_centers The individual umbrella centers labelled accordingly to ttrajs.
unbiased_state Index of the unbiased thermodynamic state.
active_set

The active set of states on which all computations and estimations will be done.

estimate(X)
Parameters:X (tuple of (ttrajs, dtrajs, btrajs)) –

Simulation trajectories. ttrajs contain the indices of the thermodynamic state, dtrajs contains the indices of the configurational states and btrajs contain the biases.

ttrajs : list of numpy.ndarray(X_i, dtype=int)
Every elements is a trajectory (time series). ttrajs[i][t] is the index of the thermodynamic state visited in trajectory i at time step t.
dtrajs : list of numpy.ndarray(X_i, dtype=int)
dtrajs[i][t] is the index of the configurational state (Markov state) visited in trajectory i at time step t.
btrajs : list of numpy.ndarray((X_i, T), dtype=numpy.float64)
For every simulation frame seen in trajectory i and time step t, btrajs[i][t,k] is the bias energy of that frame evaluated in the k’th thermodynamic state (i.e. at the k’th Umbrella/Hamiltonian/temperature).
expectation(a)

Equilibrium expectation value of a given observable.

Parameters:a ((M,) ndarray) – Observable vector
Returns:val – Equilibrium expectation value of the given observable
Return type:float

Notes

The equilibrium expectation value of an observable a is defined as follows

\[\mathbb{E}_{\mu}[a] = \sum_i \mu_i a_i\]

\(\mu=(\mu_i)\) is the stationary vector of the transition matrix \(T\).

f

The free energies (in units of kT) on the configuration states.

fit(X, y=None)

Estimates parameters - for compatibility with sklearn.

Parameters:X (object) – A reference to the data from which the model will be estimated
Returns:estimator – The estimator (self) with estimated model.
Return type:object
force_constants

The individual force matrices labelled accordingly to ttrajs. (only set, when estimated from umbrella data).

free_energies

The free energies (in units of kT) on the configuration states.

get_model_params(deep=True)

Get parameters for this model.

Parameters:deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns:params – Parameter names mapped to their values.
Return type:mapping of string to any
get_params(deep=True)

Get parameters for this estimator.

Parameters:deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns:params – Parameter names mapped to their values.
Return type:mapping of string to any
label

Human-readable description for the thermodynamic state of this model.

classmethod load(file_name, model_name='default')

Loads a previously saved PyEMMA object from disk.

Parameters:
  • file_name (str or file like object (has to provide read method)) – The file like object tried to be read for a serialized object.
  • model_name (str, default='default') – if multiple models are contained in the file, these can be accessed by their name. Use pyemma.list_models() to get a representation of all stored models.
Returns:

obj

Return type:

the de-serialized object

logger

The logger for this class instance

meval(f, *args, **kw)

Evaluates the given function call for all models Returns the results of the calls in a list

model

The model estimated by this Estimator

name

The name of this instance

nstates

Number of active states on which all computations and estimations are done.

nstates_full

Size of the full set of states.

pi

The stationary distribution on the configuration states.

save(file_name, model_name='default', overwrite=False, save_streaming_chain=False)

saves the current state of this object to given file and name.

Parameters:
  • file_name (str) – path to desired output file
  • model_name (str, default='default') – creates a group named ‘model_name’ in the given file, which will contain all of the data. If the name already exists, and overwrite is False (default) will raise a RuntimeError.
  • overwrite (bool, default=False) – Should overwrite existing model names?
  • save_streaming_chain (boolean, default=False) – if True, the data_producer(s) of this object will also be saved in the given file.

Examples

>>> import pyemma, numpy as np
>>> from pyemma.util.contexts import named_temporary_file
>>> m = pyemma.msm.MSM(P=np.array([[0.1, 0.9], [0.9, 0.1]]))
>>> with named_temporary_file() as file: # doctest: +SKIP
...    m.save(file, 'simple') # doctest: +SKIP
...    inst_restored = pyemma.load(file, 'simple') # doctest: +SKIP
>>> np.testing.assert_equal(m.P, inst_restored.P) # doctest: +SKIP
set_model_params(models=None, f_therm=None, pi=None, f=None, label='ground state')

Call to set all basic model parameters.

Parameters:
  • pi (ndarray(n)) – Stationary distribution. If not already normalized, pi will be scaled to fulfill \(\sum_i \pi_i = 1\). The free energies f will then be computed from pi via \(f_i = - \log(\pi_i)\).
  • f (ndarray(n)) – Discrete-state free energies. If normalized_f = True, a constant will be added to normalize the stationary distribution. Otherwise f is left as given. Then, pi will be computed from f via \(\pi_i = \exp(-f_i)\) and, if necessary, scaled to fulfill \(\sum_i \pi_i = 1\). If both (pi and f) are given, f takes precedence over pi.
  • normalize_energy (bool, default=True) – If parametrized by free energy f, normalize them such that \(\sum_i \pi_i = 1\), which is achieved by \(\log \sum_i \exp(-f_i) = 0\).
  • label (str, default=None) – Human-readable description for the thermodynamic state of this model. May contain a temperature description, such as ‘300 K’ or a description of bias energy such as ‘unbiased’ or ‘Umbrella 1’.
set_params(**params)

Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object. :returns: :rtype: self

stationary_distribution

The stationary distribution on the configuration states.

temperatures

The individual temperatures labelled accordingly to ttrajs. (only set, when estimated from multi-temperature data).

umbrella_centers

The individual umbrella centers labelled accordingly to ttrajs. (only set, when estimated from umbrella data).

unbiased_state

Index of the unbiased thermodynamic state.

update_model_params(**params)

Update given model parameter if they are set to specific values