pyemma.thermo.MEMM¶
-
class
pyemma.thermo.
MEMM
(models, f_therm, pi=None, f=None, label='ground state')¶ Coupled set of Markov state models at multiple thermodynamic states
Parameters: - models (list of Model objects) – List of Model objects, e.g. StationaryModel or MSM objects, at the different thermodynamic states. This list may include the ground state, such that self.pi = self.models[0].pi holds. An example for that is data obtained from parallel tempering or replica-exchange, where the lowest simulated temperature is usually identical to the thermodynamic ground state. However, the list does not have to include the thermodynamic ground state. For example, when obtaining data from umbrella sampling, models might be the list of stationary models for n umbrellas (biased ensembles), while the thermodynamic ground state is the unbiased ensemble. In that case, self.pi would be different from any self.models[i].pi
- f_therm (ndarray(k)) – free energies at the different thermodynamic states
- pi (ndarray(n), default=None) – Stationary distribution of the thermodynamic ground state. If not already normalized, pi will be scaled to fulfill \(\sum_i \pi_i = 1\). If None, models[0].pi will be used
- f (ndarray(n)) – Discrete-state free energies of the thermodynamic ground state.
- label (str, default='ground state') – Human-readable description for the thermodynamic ground state or reference state of this multiensemble. May contain a temperature description, such as ‘300 K’ or a description of bias energy such as ‘unbiased’.
-
__init__
(models, f_therm, pi=None, f=None, label='ground state')¶ Parameters: - models (list of model objects) – List of model objects, e.g.
StationaryModel
or :class:`ThermoMSM <pyemma.thermo.models.memm.ThermoMSM> objects, at the different thermodynamic states. This list may include the ground state, such that self.pi = self.models[*].pi holds, where * denotes the ground state. An example for that is data obtained from parallel tempering or replica-exchange, where the lowest simulated temperature is usually identical to the thermodynamic ground state. However, the list does not have to include the thermodynamic ground state. For example, when obtaining data from umbrella sampling, models might be the list of stationary models for n umbrellas (biased ensembles), while the thermodynamic ground state is the unbiased ensemble. In that case, self.pi would be different from any self.models[i].pi. - f_therm (numpy.ndarray(k)) – Free energies of the different thermodynamic states.
- pi (numpy.ndarray(n), default=None) – Stationary distribution of the thermodynamic ground state. If not already normalized, pi will be scaled to fulfill \(\sum_i \pi_i = 1\). If None, models[0].pi will be used.
- f (numpy.ndarray(n)) – Discrete-state free energies of the thermodynamic ground state.
- label (str, optional, default='ground state') – Human-readable description for the thermodynamic ground state or reference state of this multiensemble. May contain a temperature description, such as ‘300 K’ or a description of bias energy such as ‘unbiased’.
- models (list of model objects) – List of model objects, e.g.
Methods
__init__
(models, f_therm[, pi, f, label])param models: List of model objects, e.g. expectation
(a)Equilibrium expectation value of a given observable. get_model_params
([deep])Get parameters for this model. load
(file_name[, model_name])Loads a previously saved PyEMMA object from disk. meval
(f, *args, **kw)Evaluates the given function call for all models Returns the results of the calls in a list save
(file_name[, model_name, overwrite, …])saves the current state of this object to given file and name. set_model_params
([models, f_therm, pi, f, label])Call to set all basic model parameters. update_model_params
(**params)Update given model parameter if they are set to specific values Attributes
active_set
The active set of states on which all computations and estimations will be done. f
The free energies (in units of kT) on the configuration states. f_full_state
free_energies
The free energies (in units of kT) on the configuration states. free_energies_full_state
label
Human-readable description for the thermodynamic state of this model. msm
MSM of the unbiased thermodynamic state; only present when unbiased data available. nstates
Number of active states on which all computations and estimations are done. nstates_full
Size of the full set of states. pi
The stationary distribution on the configuration states. pi_full_state
stationary_distribution
The stationary distribution on the configuration states. stationary_distribution_full_state
unbiased_state
Index of the unbiased thermodynamic state. -
active_set
¶ The active set of states on which all computations and estimations will be done.
-
expectation
(a)¶ Equilibrium expectation value of a given observable.
Parameters: a ((M,) ndarray) – Observable vector Returns: val – Equilibrium expectation value of the given observable Return type: float Notes
The equilibrium expectation value of an observable a is defined as follows
\[\mathbb{E}_{\mu}[a] = \sum_i \mu_i a_i\]\(\mu=(\mu_i)\) is the stationary vector of the transition matrix \(T\).
-
f
¶ The free energies (in units of kT) on the configuration states.
-
free_energies
¶ The free energies (in units of kT) on the configuration states.
-
get_model_params
(deep=True)¶ Get parameters for this model.
Parameters: deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params – Parameter names mapped to their values. Return type: mapping of string to any
-
label
¶ Human-readable description for the thermodynamic state of this model.
-
classmethod
load
(file_name, model_name='default')¶ Loads a previously saved PyEMMA object from disk.
Parameters: - file_name (str or file like object (has to provide read method)) – The file like object tried to be read for a serialized object.
- model_name (str, default='default') – if multiple models are contained in the file, these can be accessed by
their name. Use
pyemma.list_models()
to get a representation of all stored models.
Returns: obj
Return type: the de-serialized object
-
meval
(f, *args, **kw)¶ Evaluates the given function call for all models Returns the results of the calls in a list
-
msm
¶ MSM of the unbiased thermodynamic state; only present when unbiased data available.
-
nstates
¶ Number of active states on which all computations and estimations are done.
-
nstates_full
¶ Size of the full set of states.
-
pi
¶ The stationary distribution on the configuration states.
-
save
(file_name, model_name='default', overwrite=False, save_streaming_chain=False)¶ saves the current state of this object to given file and name.
Parameters: - file_name (str) – path to desired output file
- model_name (str, default='default') – creates a group named ‘model_name’ in the given file, which will contain all of the data. If the name already exists, and overwrite is False (default) will raise a RuntimeError.
- overwrite (bool, default=False) – Should overwrite existing model names?
- save_streaming_chain (boolean, default=False) – if True, the data_producer(s) of this object will also be saved in the given file.
Examples
>>> import pyemma, numpy as np >>> from pyemma.util.contexts import named_temporary_file >>> m = pyemma.msm.MSM(P=np.array([[0.1, 0.9], [0.9, 0.1]]))
>>> with named_temporary_file() as file: # doctest: +SKIP ... m.save(file, 'simple') # doctest: +SKIP ... inst_restored = pyemma.load(file, 'simple') # doctest: +SKIP >>> np.testing.assert_equal(m.P, inst_restored.P) # doctest: +SKIP
-
set_model_params
(models=None, f_therm=None, pi=None, f=None, label='ground state')¶ Call to set all basic model parameters.
Parameters: - pi (ndarray(n)) – Stationary distribution. If not already normalized, pi will be scaled to fulfill \(\sum_i \pi_i = 1\). The free energies f will then be computed from pi via \(f_i = - \log(\pi_i)\).
- f (ndarray(n)) – Discrete-state free energies. If normalized_f = True, a constant will be added to normalize the stationary distribution. Otherwise f is left as given. Then, pi will be computed from f via \(\pi_i = \exp(-f_i)\) and, if necessary, scaled to fulfill \(\sum_i \pi_i = 1\). If both (pi and f) are given, f takes precedence over pi.
- normalize_energy (bool, default=True) – If parametrized by free energy f, normalize them such that \(\sum_i \pi_i = 1\), which is achieved by \(\log \sum_i \exp(-f_i) = 0\).
- label (str, default=None) – Human-readable description for the thermodynamic state of this model. May contain a temperature description, such as ‘300 K’ or a description of bias energy such as ‘unbiased’ or ‘Umbrella 1’.
-
stationary_distribution
¶ The stationary distribution on the configuration states.
-
unbiased_state
¶ Index of the unbiased thermodynamic state.
-
update_model_params
(**params)¶ Update given model parameter if they are set to specific values