pyemma.msm.ImpliedTimescales

class pyemma.msm.ImpliedTimescales(*args, **kwargs)
__init__(estimator, lags=None, nits=None, n_jobs=None, show_progress=True, only_timescales=False)

Initialize self. See help(type(self)) for accurate signature.

Methods

_Loggable__create_logger()

_SerializableMixIn__interpolate(state, klass)

__delattr__(name, /)

Implement delattr(self, name).

__dir__()

Default dir() implementation.

__eq__(value, /)

Return self==value.

__format__(format_spec, /)

Default object formatter.

__ge__(value, /)

Return self>=value.

__getattribute__(name, /)

Return getattr(self, name).

__getstate__()

__gt__(value, /)

Return self>value.

__hash__()

Return hash(self).

__init__(estimator[, lags, nits, n_jobs, …])

Initialize self.

__init_subclass__(*args, **kwargs)

This method is called when a class is subclassed.

__le__(value, /)

Return self<=value.

__lt__(value, /)

Return self<value.

__my_getstate__()

__my_setstate__(state)

__ne__(value, /)

Return self!=value.

__new__(cls, *args, **kwargs)

Create and return a new object.

__reduce__()

Helper for pickle.

__reduce_ex__(protocol, /)

Helper for pickle.

__repr__()

Return repr(self).

__setattr__(name, value, /)

Implement setattr(self, name, value).

__setstate__(state)

__sizeof__()

Size of object in memory, in bytes.

__str__()

Return str(self).

__subclasshook__

Abstract classes can override this to customize issubclass().

_check_estimated()

_cleanup_logger(logger_id, logger_name)

_estimate(dtrajs)

_estimator_produces_samples()

_get_classes_to_inspect()

gets classes self derives from which 1.

_get_interpolation_map(cls)

_get_param_names()

Get parameter names for the estimator

_get_private_field(cls, name[, default])

_get_serialize_fields(cls)

_get_state_of_serializeable_fields(klass, state)

:return a dictionary {k:v} for k in self.serialize_fields and v=getattr(self, k)

_get_version(cls[, require])

_get_version_for_class_from_state(state, klass)

retrieves the version of the current klass from the state mapping from old locations to new ones.

_logger_is_active(level)

@param level: int log level (debug=10, info=20, warn=30, error=40, critical=50)

_postprocess_results(models)

_set_state_from_serializeable_fields_and_state(…)

set only fields from state, which are present in klass.__serialize_fields

estimate(X, **params)

param X

discrete trajectories

fit(X[, y])

Estimates parameters - for compatibility with sklearn.

get_params([deep])

Get parameters for this estimator.

get_sample_conf([conf, process])

Returns the confidence interval that contains alpha % of the sample data

get_sample_mean([process])

Returns the sample means of implied timescales.

get_sample_std([process])

Returns the standard error of implied timescales.

get_timescales([process])

Returns the implied timescale estimates

load(file_name[, model_name])

Loads a previously saved PyEMMA object from disk.

save(file_name[, model_name, overwrite, …])

saves the current state of this object to given file and name.

set_params(**params)

Set the parameters of this estimator.

Attributes

_Estimator__serialize_fields

_ImpliedTimescales__serialize_fields

_ImpliedTimescales__serialize_version

_Loggable__ids

_Loggable__refs

_SerializableMixIn__serialize_fields

_SerializableMixIn__serialize_modifications_map

_SerializableMixIn__serialize_version

__dict__

__doc__

__module__

__weakref__

list of weak references to the object (if defined)

_estimated

_loglevel_CRITICAL

_loglevel_DEBUG

_loglevel_ERROR

_loglevel_INFO

_loglevel_WARN

_save_data_producer

estimators

Returns the estimators for all lagtimes.

fraction_of_frames

Returns the fraction of frames used to compute the count matrix at each lag time.

lags

Return the list of lag times for which timescales were computed.

lagtimes

Return the list of lag times for which timescales were computed.

logger

The logger for this class instance

model

The model estimated by this Estimator

models

Returns the models for all lagtimes.

n_jobs

Returns number of jobs/threads to use during assignment of data.

name

The name of this instance

nits

Return the number of timescales.

number_of_timescales

Return the number of timescales.

sample_mean

Returns the sample means of implied timescales.

sample_std

Returns the standard error of implied timescales.

samples_available

Returns True if samples are available and thus sample means, standard errors and confidence intervals can be obtained

timescales

Returns the implied timescale estimates