pyemma.msm.HMSM

class pyemma.msm.HMSM(*args, **kwargs)

Hidden Markov model on discrete states.

Parameters

hmm (DiscreteHMM) – Hidden Markov Model

__init__(P, pobs, pi=None, dt_model='1 step')
Parameters
  • Pcoarse (ndarray (m,m)) – coarse-grained or hidden transition matrix

  • Pobs (ndarray (m,n)) – observation probability matrix from hidden to observable discrete states

  • dt_model (str, optional, default='1 step') – time step of the model

Methods

_SerializableMixIn__interpolate(state, klass)

__delattr__(name, /)

Implement delattr(self, name).

__dir__()

Default dir() implementation.

__eq__(other)

Return self==value.

__format__(format_spec, /)

Default object formatter.

__ge__(value, /)

Return self>=value.

__getattribute__(name, /)

Return getattr(self, name).

__getstate__()

__gt__(value, /)

Return self>value.

__init__(P, pobs[, pi, dt_model])

param Pcoarse

coarse-grained or hidden transition matrix

__init_subclass__(*args, **kwargs)

This method is called when a class is subclassed.

__le__(value, /)

Return self<=value.

__lt__(value, /)

Return self<value.

__my_getstate__()

__my_setstate__(state)

__ne__(value, /)

Return self!=value.

__new__(cls, *args, **kwargs)

Create and return a new object.

__reduce__()

Helper for pickle.

__reduce_ex__(protocol, /)

Helper for pickle.

__repr__()

Return repr(self).

__setattr__(name, value, /)

Implement setattr(self, name, value).

__setstate__(state)

__sizeof__()

Size of object in memory, in bytes.

__str__()

Return str(self).

__subclasshook__

Abstract classes can override this to customize issubclass().

_assert_in_active(A)

Checks if set A is within the active set

_assert_metastable()

Tests if pcca object is available, or else raises a ValueError.

_committor_backward(P, A, B[, mu])

_committor_forward(P, A, B)

_compute_eigendecomposition(neig)

Conducts the eigenvalue decomposition and stores k eigenvalues, left and right eigenvectors

_compute_eigenvalues(neig)

Conducts the eigenvalue decomposition and stores k eigenvalues, left and right eigenvectors

_ensure_eigendecomposition([neig])

Ensures that eigendecomposition has been performed with at least neig eigenpairs

_ensure_eigenvalues([neig])

Ensures that at least neig eigenvalues have been computed

_get_classes_to_inspect()

gets classes self derives from which 1.

_get_interpolation_map(cls)

_get_model_param_names()

Get parameter names for the model

_get_private_field(cls, name[, default])

_get_serialize_fields(cls)

_get_state_of_serializeable_fields(klass, state)

:return a dictionary {k:v} for k in self.serialize_fields and v=getattr(self, k)

_get_version(cls[, require])

_get_version_for_class_from_state(state, klass)

retrieves the version of the current klass from the state mapping from old locations to new ones.

_mfpt(P, A, B[, mu])

_set_state_from_serializeable_fields_and_state(…)

set only fields from state, which are present in klass.__serialize_fields

committor_backward(A, B)

Backward committor from set A to set B

committor_forward(A, B)

Forward committor (also known as p_fold or splitting probability) from set A to set B

correlation(a[, b, maxtime, k, ncv])

Time-correlation for equilibrium experiment.

eigenvalues([k])

Compute the transition matrix eigenvalues

eigenvectors_left([k])

Compute the left transition matrix eigenvectors

eigenvectors_right([k])

Compute the right transition matrix eigenvectors

expectation(a)

Equilibrium expectation value of a given observable.

fingerprint_correlation(a[, b, k, ncv])

Dynamical fingerprint for equilibrium time-correlation experiment.

fingerprint_relaxation(p0, a[, k, ncv])

Dynamical fingerprint for perturbation/relaxation experiment.

get_model_params([deep])

Get parameters for this model.

load(file_name[, model_name])

Loads a previously saved PyEMMA object from disk.

mfpt(A, B)

Mean first passage times from set A to set B, in units of the input trajectory time step

pcca(m)

Runs PCCA++ [1]_ to compute a metastable decomposition of MSM states

propagate(p0, k)

Propagates the initial distribution p0 k times

relaxation(p0, a[, maxtime, k, ncv])

Simulates a perturbation-relaxation experiment.

save(file_name[, model_name, overwrite, …])

saves the current state of this object to given file and name.

set_model_params([P, pobs, pi, reversible, …])

param P

coarse-grained or hidden transition matrix

simulate(N[, start, stop, dt])

Generates a realization of the Hidden Markov Model

submodel([states, obs])

Returns a HMM with restricted state space

timescales([k])

The relaxation timescales corresponding to the eigenvalues

transition_matrix_obs([k])

Computes the transition matrix between observed states

update_model_params(**params)

Update given model parameter if they are set to specific values

Attributes

P

The transition matrix on the active set.

_HMSM__serialize_version

_MSM__serialize_fields

_MSM__serialize_version

_SerializableMixIn__serialize_fields

_SerializableMixIn__serialize_modifications_map

_SerializableMixIn__serialize_version

__dict__

__doc__

__hash__

__module__

__weakref__

list of weak references to the object (if defined)

_save_data_producer

dt_model

Description of the physical time corresponding to the lag.

eigenvectors_left_obs

eigenvectors_right_obs

is_reversible

Returns whether the MSM is reversible

is_sparse

Returns whether the MSM is sparse

lifetimes

Lifetimes of states of the hidden transition matrix

metastable_assignments

Computes the assignment to metastable sets for observable states

metastable_distributions

Returns the output probability distributions. Identical to

metastable_memberships

Computes the memberships of observable states to metastable sets by

metastable_sets

Computes the metastable sets of observable states within each

n_metastable

Number of states chosen for PCCA++ computation.

neig

number of eigenvalues to compute.

nstates

Number of active states on which all computations and estimations are done

nstates_obs

observation_probabilities

returns the output probability matrix

pi

The stationary distribution on the MSM states

reversible

Returns whether the MSM is reversible

sparse

Returns whether the MSM is sparse

stationary_distribution

The stationary distribution on the MSM states

stationary_distribution_obs

timestep_model

Physical time corresponding to one transition matrix step, e.g.

transition_matrix

The transition matrix on the active set.