pyemma.coordinates.transform.PCA

class pyemma.coordinates.transform.PCA(output_dimension)

Principal component analysis.

Given a sequence of multivariate data \(X_t\), computes the mean-free covariance matrix.

\[C = (X - \mu)^T (X - \mu)\]

and solves the eigenvalue problem

\[C r_i = \sigma_i r_i,\]

where \(r_i\) are the principal components and \(\sigma_i\) are their respective variances.

When used as a dimension reduction method, the input data is projected onto the dominant principal components.

Parameters:output_dimension (int) – number of principal components to project onto
__init__(output_dimension)

Methods

__init__(output_dimension)
describe(*args, **kwargs) Get a descriptive string representation of this class.
dimension() Returns the number of output dimensions.
get_output([dimensions, stride]) Maps all input data of this transformer and returns it as an array or list of arrays.
iterator([stride, lag]) Returns an iterator that allows to access the transformed data.
map(X) Maps the input data through the transformer to correspondingly shaped output data array/list.
n_frames_total([stride]) Returns total number of frames.
number_of_trajectories() Returns the number of trajectories.
output_type() By default transformers return single precision floats.
parametrize([stride]) Parametrize this Transformer
trajectory_length(itraj[, stride]) Returns the length of trajectory of the requested index.
trajectory_lengths([stride]) Returns the length of each trajectory.

Attributes

chunksize chunksize defines how much data is being processed at once.
covariance_matrix
data_producer where the transformer obtains its data.
in_memory are results stored in memory?
mean
chunksize

chunksize defines how much data is being processed at once.

data_producer

where the transformer obtains its data.

describe(*args, **kwargs)

Get a descriptive string representation of this class.

dimension()

Returns the number of output dimensions.

get_output(dimensions=slice(0, None, None), stride=1)

Maps all input data of this transformer and returns it as an array or list of arrays.

Parameters:
  • dimensions (list-like of indexes or slice) – indices of dimensions you like to keep, default = all
  • stride (int) – only take every n’th frame, default = 1
Returns:

output – the mapped data, where T is the number of time steps of the input data, or if stride > 1, floor(T_in / stride). d is the output dimension of this transformer. If the input consists of a list of trajectories, Y will also be a corresponding list of trajectories

Return type:

ndarray(T, d) or list of ndarray(T_i, d)

Notes

  • This function may be RAM intensive if stride is too large or too many dimensions are selected.
  • if in_memory attribute is True, then results of this methods are cached.

Example

plotting trajectories

>>> import pyemma.coordinates as coor
>>> import matplotlib.pyplot as plt
>>> %matplotlib inline # only for ipython notebook
>>>
>>> tica = coor.tica() # fill with some actual data!
>>> trajs = tica.get_output(dimensions=(0,), stride=100)
>>> for traj in trajs:
>>>     plt.figure()
>>>     plt.plot(traj[:, 0])
in_memory

are results stored in memory?

iterator(stride=1, lag=0)

Returns an iterator that allows to access the transformed data.

Parameters:
  • stride (int) – Only transform every N’th frame, default = 1
  • lag (int) – Configure the iterator such that it will return time-lagged data with a lag time of lag. If lag is used together with stride the operation will work as if the striding operation is applied before the time-lagged trajectory is shifted by lag steps. Therefore the effective lag time will be stride*lag.
Returns:

iterator – If lag = 0, a call to the .next() method of this iterator will return the pair (itraj, X) : (int, ndarray(n, m)), where itraj corresponds to input sequence number (eg. trajectory index) and X is the transformed data, n = chunksize or n < chunksize at end of input.

If lag > 0, a call to the .next() method of this iterator will return the tuple (itraj, X, Y) : (int, ndarray(n, m), ndarray(p, m)) where itraj and X are the same as above and Y contain the time-lagged data.

Return type:

a pyemma.coordinates.transfrom.TransformerIterator transformer iterator

map(X)

Maps the input data through the transformer to correspondingly shaped output data array/list.

Parameters:X (ndarray(T, n) or list of ndarray(T_i, n)) – The input data, where T is the number of time steps and n is the number of dimensions. If a list is provided, the number of time steps is allowed to vary, but the number of dimensions are required to be to be consistent. required to be to be consistent.
Returns:Y – The mapped data, where T is the number of time steps of the input data and d is the output dimension of this transformer. If called with a list of trajectories, Y will also be a corresponding list of trajectories
Return type:ndarray(T, d) or list of ndarray(T_i, d)
n_frames_total(stride=1)

Returns total number of frames.

Parameters:stride (int) – return value is the number of frames in trajectories when running through them with a step size of stride.
Returns:int
Return type:n_frames_total
number_of_trajectories()

Returns the number of trajectories.

Returns:int
Return type:number of trajectories
output_type()

By default transformers return single precision floats.

parametrize(stride=1)

Parametrize this Transformer

trajectory_length(itraj, stride=1)

Returns the length of trajectory of the requested index.

Parameters:
  • itraj (int) – trajectory index
  • stride (int) – return value is the number of frames in the trajectory when running through it with a step size of stride.
Returns:

int

Return type:

length of trajectory

trajectory_lengths(stride=1)

Returns the length of each trajectory.

Parameters:stride (int) – return value is the number of frames of the trajectories when running through them with a step size of stride.
Returns:int
Return type:length of each trajectory