pyemma.msm.analysis.is_rate_matrix¶
-
pyemma.msm.analysis.
is_rate_matrix
(K, tol=1e-12)¶ Check if the given matrix is a rate matrix.
Parameters: - K ((M, M) ndarray or scipy.sparse matrix) – Matrix to check
- tol (float (optional)) – Floating point tolerance to check with
Returns: is_rate_matrix – True, if K is a valid rate matrix, False otherwise
Return type: bool
Notes
A valid rate matrix \(K=(k_{ij})\) has non-positive off diagonal elements, \(k_{ij} \leq 0\), for \(i \neq j\), and elements of each row sum up to zero, \(\sum_{j} k_{ij}=0\).
Examples
>>> from pyemma.msm.analysis import is_rate_matrix
>>> A = np.array([[0.5, -0.5, -0.2], [-0.3, 0.6, -0.3], [-0.2, 0.2, 0.0]]) >>> is_rate_matrix(A) False
>>> K = np.array([[0.3, -0.2, -0.1], [-0.5, 0.5, 0.0], [-0.1, -0.1, 0.2]]) >>> is_rate_matrix(K) True