pyemma.msm.io.load_matrix¶
-
pyemma.msm.io.
load_matrix
(filename, mode='default')¶ Read matrix from binary file.
Parameters: - filename (str) – Relative or absolute pathname of the input file.
- mode ({'default', 'dense', 'sparse'}) –
mode ‘default’ Use the filename to determine the matrix formatname.npy (dense), name.coo.npy (sparse) ‘dense’ Read file as dense matrix ‘sparse’ Read file as sparse matrix in COO-format
See also
Notes
(M, N) dense matrices are read as ndarray from binary numpy .npy files. Sparse matrices are read as ndarray representing a coordinate list [...,(row, col, value),...] from binary numpy .npy files and returned as sparse matrices in (COO) format.
Examples
>>> from tempfile import NamedTemporaryFile >>> from pyemma.msm.io import load_matrix, save_matrix
dense
Use temporary file with ending ‘.npy’
>>> tmpfile = NamedTemporaryFile(suffix='.npy')
Dense (3, 2) matrix
>>> A = np.array([[3, 1], [2, 1], [1, 1]]) >>> save_matrix(tmpfile.name, A)
Load from disk
>>> X = load_matrix(tmpfile.name) >>> X array([[ 3., 1.], [ 2., 1.], [ 1., 1.]])
sparse
>>> from scipy.sparse import csr_matrix
Use temporary file with ending ‘.coo.dat’
>>> tmpfile = NamedTemporaryFile(suffix='.coo.npy')
Sparse (3, 3) matrix
>>> A = csr_matrix(np.eye(3)) >>> write_matrix(tmpfile.name, A)
Load from disk
>>> X = load_matrix(tmpfile.name) >>> X array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]])