msmtools.analysis.mfpt¶
-
msmtools.analysis.
mfpt
(T, target, origin=None, tau=1, mu=None)¶ Mean first passage times (from a set of starting states - optional) to a set of target states.
Parameters: - T (ndarray or scipy.sparse matrix, shape=(n,n)) – Transition matrix.
- target (int or list of int) – Target states for mfpt calculation.
- origin (int or list of int (optional)) – Set of starting states.
- tau (int (optional)) – The time-lag (in elementary time steps of the microstate trajectory) at which the given transition matrix was constructed.
- mu ((n,) ndarray (optional)) – The stationary distribution of the transition matrix T.
Returns: m_t – Mean first passage time or vector of mean first passage times.
Return type: ndarray, shape=(n,) or shape(1,)
Notes
The mean first passage time \(\mathbf{E}_x[T_Y]\) is the expected hitting time of one state \(y\) in \(Y\) when starting in state \(x\).
For a fixed target state \(y\) it is given by
\[\begin{split}\mathbb{E}_x[T_y] = \left \{ \begin{array}{cc} 0 & x=y \\ 1+\sum_{z} T_{x,z} \mathbb{E}_z[T_y] & x \neq y \end{array} \right.\end{split}\]For a set of target states \(Y\) it is given by
\[\begin{split}\mathbb{E}_x[T_Y] = \left \{ \begin{array}{cc} 0 & x \in Y \\ 1+\sum_{z} T_{x,z} \mathbb{E}_z[T_Y] & x \notin Y \end{array} \right.\end{split}\]The mean first passage time between sets, \(\mathbf{E}_X[T_Y]\), is given by
\[\mathbb{E}_X[T_Y] = \sum_{x \in X} \frac{\mu_x \mathbb{E}_x[T_Y]}{\sum_{z \in X} \mu_z}\]References
[1] Hoel, P G and S C Port and C J Stone. 1972. Introduction to Stochastic Processes. Examples
>>> import numpy as np >>> from msmtools.analysis import mfpt
>>> T = np.array([[0.9, 0.1, 0.0], [0.5, 0.0, 0.5], [0.0, 0.1, 0.9]]) >>> m_t = mfpt(T, 0) >>> m_t array([ 0., 12., 22.])